Statistics calculated on confusion matrix

Confusion matrix

Theoretical confusion matrix

		Automatic classification	
		Positive	Negative
Manual classification	Positive	TP	FN
	Negative	FP	TN

Example

Automatic classification of three groups A, B, C

		Automatic classification		
		A	В	С
Manual classification	A	1	1	1
	В	1	3	0
	С	0	0	3

For group **A**, the matrix can be reduced as:

		Automatic classification	
		Group A	Not group A
Manual classification	Group A	TP = 1	FN = 2
	Not group A	FP = 1	TN = 6

For group **B**, the matrix can be reduced as:

		Automatic classification	
		Group B	Not group B
Manual classification	Group B	TP = 3	FN = 1
	Not group B	FP = 1	TN = 5

For group **C**, the matrix can be reduced as:

		Automatic classification	
		Group C	Not group C
Manual classification	Group C	TP = 3	FN = 0
	Not group C	FP = 1	TN = 6

Explanation of main parameters

TP : True Positive

Number of particles of the group of interest correctly classified.

TN : True Negative

Number of particles of all the other groups classified as other groups.

FP : False Positive

Number of particles of other groups classified in the group of interest.

FN : False Negative

Number of particles of the group of interest classified in the other groups.

General statistics

Accuracy

 $\frac{\left(TP+TN\right)}{\left(TP+TN+FP+FN\right)}$

Error

1 – Accuracy

The eight basic ratios

Recall

Also called: Sensitivity, TPR : True Positive Rate, Power, Probability of detection

 $\frac{TP}{(TP+FN)} = 1 - FNR$

Specificity

Also called: TNR : True Negative Rate, Selectivity

$$\frac{TN}{(TN+FP)} = 1 - FPR$$

Precision

Also called: PPV : Positive Predicted Value, Reproducibility, Repeatability

 $\frac{TP}{(TP+FP)} = 1 - FDR$

NPV : Negative Predicted Value

 $\frac{TN}{(TN+FN)} = 1 - \text{FOR}$

FPR : False Positive Rate

Also called: alpha, Type I Error, p-Value

 $\frac{FP}{(FP+TN)} = 1 - \text{Specificity}$

FNR : False Negative Rate

Also called: beta, Type II Error

 $\frac{FN}{\left(TP+FN\right)} = 1 - \text{Recall}$

FDR : False Discovery Rate

Also called : q-Value

 $\frac{FP}{(TP+FP)} = 1 - Precision$

FOR : False Omission Rate

 $\frac{FN}{(FN+TN)} = 1 - \text{NPV}$

The four ratios of ratios

LRPT : Likelihood Ratio for Positive Tests

 $\frac{TPI(TP+FN)}{FPI(FP+TN)} = \frac{Recall}{(1-Specificity)} = \frac{Recall}{FPR}$

LRNT : Likelihood Ratio for Negative Tests

FN/(FN+TP)	_	(1 - Recall)	_	FNR
TN/(TN+FP)	_	Specificity	_	Specificity

LRPS : Likelihood Ratio for Positive Subjects

TP/(TP+FP)	_	Precision	 Precision
FN/(FN+TN)	_	$\overline{(1-NPV)}$	FOR

LRNS : Likelihood Ratio for Negative Subjects

FP/(FP+TP)	(1 - Precision)	FDR
$\overline{TN/(TN+FN)}$ –	(1-FOR)	NPV

Additional statistics

Fmes : F-measure

Also called: F1-score, harmonic mean of precision and recall

 $2*(\frac{(\textit{Precision}*\textit{Recall})}{(\textit{Precision}+\textit{Recall})})$

BalAcc : Balanced accuracy

 $\frac{(Specificity + Recall)}{2}$

MCC : Matthews Correlation Coefficient

Attention: If any sum of the denominator is 0, the total denominator can be set to 1

 $\frac{(\mathit{TP}*\mathit{TN}) - (\mathit{FP}*\mathit{FN})}{\sqrt{((\mathit{TP}+\mathit{FP})*(\mathit{TP}+\mathit{FN})*(\mathit{TN}+\mathit{FP})*(\mathit{TN}+\mathit{FN}))}}$

Chisq : χ^2

Also called : Significance

 $\frac{\left[\left(TP*TN\right)-\left(FP*FN\right)\right]^{2}*\left(TP+TN+FP+FN\right)}{\left(TP+FP\right)*\left(TP+FN\right)*\left(TN+FP\right)*\left(TN+FN\right)}$

Auto_Manu : Difference between Automatic and Manual classification

(TP+FP)-(TP+FN)

Dissimilarity Index of Bray Curtis

 $\frac{\left|\left(\textit{Auto}_\textit{Manu}\right)\right|}{\sum\left(\textit{TP}+\textit{FP}\right)+\sum\left(\textit{TP}+\textit{FN}\right)}$